
GREEDY LAYER-WISE TRAINING OF LONG SHORT TERM MEMORY NETWORKS

Kaisheng Xu†, Xu Shen†, Ting Yao‡, Xinmei Tian†, Tao Mei‡

† CAS Key Laboratory of Technology in Geo-Spatial Information Processing and Application System,
University of Science and Technology of China, Hefei, Anhui, China

‡ Microsoft Research, Beijing, China
{ksxu, shenxu}@mail.ustc.edu.cn, tingyao.ustc@gmail.com, xinmei@ustc.edu.cn, tmei@microsoft.com

ABSTRACT
Recent developments in Recurrent Neural Networks (RNNs)
such as Long Short Term Memory (LSTM) have shown
promising potential for modeling sequential data. Neverthe-
less, training LSTM is not trivial when there are multiple lay-
ers in the deep architectures. This difficulty originates from
the initialization method of LSTM, where gradient-based op-
timization often appears to converge to poor local solutions.
In this paper, we explore an unsupervised pretraining mech-
anism for LSTM initialization, following the philosophy that
the unsupervised pretraining plays the role of a regularizer
to guide the subsequent supervised training. We propose a
novel encoder-decoder-based learning framework to initialize
a multi-layer LSTM in a greedy layer-wise manner in which
each added LSTM layer is trained to retain the main infor-
mation in the previous representation. A multi-layer LSTM
trained with our method outperforms the one trained with
random initialization, with clear advantages on several tasks.
Moreover, the multi-layer LSTMs converge 4 times faster
with our greedy layer-wise training method.

Index Terms— Layer-wise training, Long Short Term
Memory

1. INTRODUCTION

Understanding sequential data is a fundamental problem in
the field of Artificial Intelligence. Recurrent Neural Networks
(RNNs) such as Long Short Term Memory (LSTM) have been
successfully used to capture sequential information by map-
ping sequences to other sequences in many learning tasks, in-
cluding speech recognition, machine translation, image and
video captioning and action recognition [1].

While promising results have been achieved using LSTM
for various tasks, initializing LSTM parameters is very chal-
lenging, as the training criterion is non-convex and involves
many local minima. A general empirical work has demon-
strated the effect of parameter initialization in deep architec-
tures [2]. With hundreds of different random initializations,
gradient descent converges to a different local minimum each
time. More importantly, purely supervised training starting

from random initialization may become worse in those archi-
tectures with multiple layers. Therefore, the main challenge
is how to effectively initialize the LSTM parameters.

Inspired by greedy unsupervised pretraining in Deep Be-
lief Networks (DBNs) [3] and stacked autoencoders [4], this
paper describes an investigation of greedy layer-wise pretrain-
ing to initialize an LSTM. The greedy layer-wise pretraining
strategy starts by pretraining one layer at a time in a greedy
manner, using an unsupervised learning process for each layer
to preserve input information. Then, the whole network is fine
tuned with respect to an ultimate criterion with a gradient-
based optimization. Networks pretrained in this way are ex-
pected to reach better local minima and support better gener-
alization; thus, the parameters learned in this phase can func-
tion as a better method of network initialization in subsequent
supervised learning tasks.

By incorporating the greedy layer-wise pretraining
method into LSTM training, we present a novel encoder-
decoder-based learning architecture for multi-layer LSTM
initialization. Specifically, an encoding LSTM is used to
learn the representation of the input sequence. Subsequently,
the decoding LSTM can reconstruct the input sequence from
that representation. Then, we recursively use hidden states
from the previous encoding LSTM as the input of the next
encoding-decoding LSTM layer to initialize a desired num-
ber of LSTM layers. Finally, we connect the hidden out-
put of the last LSTM layer to a supervised layer and fine
tune all the parameters using supervised costs. A multi-
layer LSTM initialized with our approach noticeably outper-
forms one trained using random initialization on several tasks.
Moreover, a multi-layer LSTM trained using our approach
converges much faster.

The main contributions of this paper are as follows:

• We study the initialization problem of LSTM networks.
To the best of our knowledge, this paper represents
one of the first attempts from the artificial intelligence
community to target this type of network using greedy
layer-wise training.

• A novel encoder-decoder-based learning framework is
proposed to initialize multi-layer LSTMs in a greedy

978-1-5386-1737-3/18/$31.00 c©2018 IEEE

layer-wise manner. The resulting LSTMs are better
than those trained using random initialization in terms
of convergence speed and recognition performance.

• The proposed strategy is evaluated on four diverse
tasks, i.e., regression, recognition of handwritten dig-
its, video classification and machine translation, and
LSTMs trained with our method consistently outper-
form LSTMs trained using random initialization.

2. RELATED WORK

Greedy layer-wise unsupervised learning was first introduced
for training DBNs [3]. It consists of two steps: unsupervised
layer-wise pretraining and supervised fine tuning. After layer-
wise pretraining, the network is represented by a stack of Re-
stricted Boltzmann Machines (RBMs), in which the learned
feature activations of the previous RBM are used as the “data”
to train the next RBM in the stack. Similarly, autoencoders
can also be used as the building blocks for layer-wise pre-
training of multi-layer neural networks [4]. Theoretical and
empirical analyses of the greedy layer-wise training method
for deep networks were presented in [4, 2, 5]. This empir-
ical analysis confirmed that greedy layer-wise unsupervised
training primarily helps by initializing weights in a region
near a good local minimum that supports better generaliza-
tion [4, 5]. Erhan et al. clarified that layer-wise pretraining
acts similarly to a regularizer [2].

Recently, unsupervised or semi-supervised training of
RNNs has mostly been accomplished by training encoder-
decoder-based architectures [6, 7, 8, 1]. A combination of
an autoencoder model and a future predictor model was used
for unsupervised LSTM training in [1]. In [6], the RNN
was connected to two linear decoders that reconstructed the
input and predicted its supervised classification. Similarly, an
LSTM encoder was trained to provide representations used by
two decoders: one LSTM decoder that reconstructs the input
sequence in reverse order and one classifier for classification
purposes [7]. In [8], the recurrent sequence autoencoder
relearns the sequence prediction and is then used as a “pre-
training” algorithm for a later supervised learning method.

Inspired by the success of greedy layer-wise training in
fully connected networks and the LSTM autoencoder method
for unsupervised learning, in this paper, we propose to im-
prove the performance of multi-layer LSTMs by greedy layer-
wise pretraining. This is one of the first attempts to use greedy
layer-wise training for LSTM initialization.

3. OUR APPROACH

Deep architectures trained with random initialization can eas-
ily converge to poor local minima, leading to much slower
convergence and reduced performance. Unsupervised layer-
wise pretraining using the stacked autoencoder method has

shown success in solving such problems with deep, fully con-
nected neural networks. Meanwhile, an LSTM autoencoder
demonstrates a good power to learn sequence representations.
To achieve better initialization for deep LSTM models, we
aim to leverage the LSTM autoencoder to perform layer-wise
pretraining of each LSTM in the deep model. In the fol-
lowing, we will first present the related components and the
training algorithm for fully connected networks, and then, de-
scribe the components and proposed pretraining algorithm for
deep LSTM models.

3.1. Autoencoder

An autoencoder is trained to encode the input x into some rep-
resentation c(x) such that the input can be reconstructed from
that representation f(c(x)), where c(·) denotes the encoder
and f(·) denotes the decoder. Generally, the loss function of
such an autoencoder can be defined as the cross entropy error
−
∑

i pi log p̂i −
∑

i(1 − pi) log(1 − p̂i), or the Euclidean
distance,

∑
i(xi − x̂i)

2.

3.2. Training Stacked Autoencoders

Stacked autoencoders can be used to initialize a deep multi-
layer network [4].The training procedure is briefly described
as follows:

1. Train the first layer as an autoencoder to minimize the
reconstruction error of the raw input.

2. The outputs of that autoencoder are used as the input
for the next layer. This next layer is also trained to be
an autoencoder.

3. Iterate over step 2 to initialize the desired number of
additional layers.

4. Feed the output of the last hidden layer into a new su-
pervised layer.

5. Fine tune all the parameters of this deep architecture by
a supervised or unsupervised cost.

3.3. The Long Short Term Memory (LSTM) Algorithm

RNNs have achieved great success in sequence learning tasks.
However, the main known problem with RNNs is the diffi-
culty of modeling long-term dependencies due to the vanish-
ing or exploding problems. One of the most effective methods
to address this problem is to use LSTM networks [9]. LSTM
networks introduce a new architecture termed the memory cell
to store long term dependencies. Memory cells have three
main elements: an input gate, a forget gate and an output
gate. The input gate is designed to control adding the in-
put information to memory, while the forget gate and output
gate determine whether information will be kept or released
from the memory at each decision point. As presented in
[10], LSTM variants do not exhibit large differences in perfor-
mance. Therefore, we adopt the commonly used LSTMs as

Fig. 1. Greedy layer-wise pretraining framework for sequence clas-
sification. The encoder LSTM reads in the hidden states of the pre-
vious layer, and the decoder LSTM reconstructs the input sequence
in reverse order. During training, we fix the weights of all the previ-
ous layers; the parameters for only the current layer are learned. The
input sequence is {v1, v2, v3}. The circles represent LSTM cells.

described in [11]. The gates, cell values and hidden outputs
are computed as follows:

it = sigmoid(W xixt +Whiht−1 + bi) (1)

ot = sigmoid(W xoxt +Whoht−1 + bo) (2)

f t = sigmoid(W xfxt +Whfht−1 + bf) (3)

gt = tanh(W xgxt +Whght−1 + bg) (4)

ct = f t � ct−1 + it � gt (5)

ht = ot � tanh(ct), (6)

where the W s are weights and the bs are corresponding bias
vectors, xt, ht and ct represent the input, output and cell states
at timestep t, respectively. ht−1 and ct−1 are the output and
cell states of timestep t − 1, while it, ot and f t are the in-
put, output and forget gates, respectively. The � represents a
dot product operation, and sigmoid(x) = 1/(1 + e−x) and
tanh(x) = (ex − e−x)/(ex + e−x) are element-wise nonlin-
ear activation functions.

3.4. LSTM Autoencoder

Generally, an LSTM autoencoder consists of two LSTMs, one
for encoding and one for decoding. The input to the model is
a sequence of vectors (features or video frames). Encoder
LSTM will read in all the input sequences and encode them
into a fixed length hidden output and cell states. Then, the cell
states and hidden outputs of the encoder LSTM are copied
over to the decoding LSTM [1], which outputs a decoding
sequence that is a prediction for the input sequence. The de-
coding sequence should be the same as the input sequence in
raw or reverse order.

Reversing the target sequence should be easier because
the model needs to capture correlation in only a small range.
Consequently, we adopt this architecture to perform unsuper-
vised pretraining for sequence classification tasks. In con-
trast, reconstructing the input sequence in the original or-
der requires the model to retain the general structure and

Fig. 2. Greedy layer-wise pretraining framework for sequence-to-
sequence learning. In sequence learning, the encoder LSTM reads
the input sequence in reverse order, but the decoder LSTM is trained
to predict future elements in the original sequence. When training a
new LSTM decoder, the previous layers are fixed. Here, < GO >
is the start marker for a sequence and < EOS > is the end marker
of the sequence. The input sequence is {W,X, Y }. The circles
represent LSTM cells.

long range correlations of the input sequence; we introduce
this model to learn the initialization for sequence-to-sequence
learning tasks.

3.5. Greedy Layer-wise LSTM Training

Training deep neural networks from random initialization
with standard gradient descent is difficult, because variance
in the activations and gradients across layers can easily cause
vanishing or exploding problems when the singular values of
the Jacobian associated with each layer are far from 1 [12].
If we denote the output of layer i+1 as zi+1 and that of layer
i as zi, the Jacobian matrix associated with layer i is defined
as:

Ji =
∂zi+1

∂zi
= {W i; f}, (7)

where the W i values represent the weights of layer i and f is
the activation function. In practice, if W is are not properly
initialized according to different f (Ji near 1), the gradients
may exhibit different magnitudes at different layers, which
leads to poor conditioning and slower training. There are two
directions of gradients flows in the deep LSTM model: inner
LSTM and inter LSTMs. That is, in the LSTM layer l, we
have

Jl =
∂ht+1

l

∂ht
l

= {Wl; f}, (8)

while between LSTM layer l and LSTM layer l + 1, we have

Jl+1
l =

∂ht
l+1

∂ht
l

= {Wl;Wl+1; f}. (9)

Here Wl and Wl+1 are the weights in layers l and l + 1, re-
spectively, and ht

l+1 and ht
l are the hidden states of layesr l+1

and l in timestep t, respectively. As shown in Equation 6, the
relationships between ht+1

l and ht
l and between ht

l+1 and ht
l

are non-trivial, and they cannot be expressed as an explicit
function. Consequently, we cannot derive the proper random
initialization of weights to avoid the vanishing or exploding

problems in gradient flows such as in deep feed forward neu-
ral networks [12].

In order to obtain proper weight initialization in deep
LSTM models, we propose to first leverage the LSTM autoen-
coder to learn weights that ensure a constant gradient and ac-
tivation flow in a single LSTM layer. Then, the hidden states
of the previous layer are recursively used as input for the next
LSTM autoencoder. The weights will be tuned to ensure inter
LSTM layer constant gradient flows through an overall tuning
step. Finally, gradient descent learning of supervised tasks
from this initialization is expected to escape from vanishing
or exploding problems; consequently, the model should learn
better and faster than random initialized models.

In addition, this layer-wise training process influences
each LSTM layer to memorize the previous representations
of the sequence and to reconstruct the original input from that
representation. Because the extracted information grows in-
creasingly abstract from the lower layers to the higher layers,
the model must retain the most useful and compact informa-
tion and drop irrelevant noise from the input. This helps the
model to escape from poor local optima in the weight space.
Therefore, we believe that this procedure is better approach
than random initialization for training deep LSTM networks.

The procedure to train a multi-layer LSTM is similar to
that of stacked autoencoders:

1. Train the first LSTM layer as an LSTM autoencoder.
The input sequence is also used as the input for the de-
coding LSTM.

2. The hidden states of the encoding LSTM are used as
the input for the next LSTM autoencoder. To assist the
model in learning the input sequence, we require the
decoding LSTM to recover the original input sequence.

3. Iterate step 2 to initialize the desired number of addi-
tional LSTM layers.

4. Use the hidden outputs of the last LSTM layer as the
inputs for a supervised layer.

5. Fine tune all the parameters of this deep architecture by
a supervised cost.

Following the pipeline described above, our framework
for layer-wise pretraining in sequence classification and the
sequence-to-sequence learning task are shown in Fig. 1 and
Fig. 2, respectively. For the sequence classification task,
the input signals or features {v1, v2, v3} are read into the en-
coder LSTM in raw order, and the decoder LSTM is required
to reconstruct the input in reverse order {v′3, v′2, v′1} because
it is easier to reconstruct signals within a small range (Fig.
1). For the sequence-to-sequence learning task, the goal is
to predict the next element in the target sequence; therefore,
the decoding output is required to be in the same order as
the ground truth sequence {W,X, Y }; however, to reduce the
length of dependencies between the input and the predicted
output {W ′, X ′, Y ′}, we reverse the input sequence as dis-
cussed in [13] (Fig. 2).

Table 1. Performance of LSTMs on the Adding dataset.
Methods Error

Random initialized (1 layer) 6.2%
Layer-wise initialized (1 layer) 5.3%
Random initialized (2 layers) 5.6%

Layer-wise initialized (2 layers) 4.8%
Random initialized (3 layers) 5.7%

Layer-wise initialized (3 layers) 4.8%

Table 2. Performance of LSTMs on the MNIST dataset.
Methods Error

Random initialized (1 layer) 0.89%
Layer-wise initialized (1 layer) 0.76%
Random initialized (2 layers) 0.75%

Layer-wise initialized (2 layers) 0.62%
Random initialized (3 layers) 0.80%

Layer-wise initialized (3 layers) 0.60%

4. EXPERIMENTS

To evaluate the effectiveness of our proposed layer-wise pre-
training of LSTM, we conduct extensive experiments on the
Adding, MNIST, UCF-101 and WMT’14 datasets. These four
datasets are representative of regression, image recognition,
video recognition and sequence-to-sequence learning tasks.
Since our layer-wise pretraining is the first attempt for multi-
layer LSTM initialization without using any extra unlabeled
data, our only baseline is random initialized LSTM. Exper-
imental results show that layer-wise pretraining can gener-
ally improve the performance of LSTM networks in sequence
learning tasks. The details are presented in the following sec-
tions.

In the pretraining phase, we use the same learning rate,
random initialization and batch size as those used in the fine
tuning phase. Reconstruction loss is defined as the Euclidean
distance between the input and predicted sequences on the
Adding, MNIST and UCF-101 datasets, while in WMT’14
dataset, our model is pretrained by maximizing the log prob-
ability of the correct input sentence; therefore, the objective
is 1/|S|

∑
S∈S log p(Ŝ|S). Empirically, we found that the

model typically converges quite well after only one exposure
to all the training samples in the pretraining stage. Therefore,
we pretrained the model for only one epoch in all the experi-
ments.

4.1. The Adding Problem

The adding problem is a toy benchmark used to evaluate the
power of recurrent models in learning long-term dependen-
cies [9]. The input to the LSTM is a two-dimensional se-
quence. One dimension is sampled from a uniform distribu-
tion in the range [0, 1] and the other is a mask signal. The
mask is usually 0 but it has a value of 1 at two random steps.
The LSTM is trained to predict the sum of the two numbers

Fig. 3. Evolution of training loss on MNIST without pretraining and
with pretraining w.r.t. different layer sizes. Left: LSTM with 1 layer.
Middle: LSTM with 2 layers. Right: LSTM with 3 layers. (Due to
the space limitation, the full size figure is given in the supplementary
material.)

at the points where the mask is 1.
To evaluate our layer-wise training of LSTM, we gener-

ated 100, 000 training examples and 10, 000 test examples
using sequences of length T = 200. The positions of the
two masks that have a value of 1 are randomly selected from
[0, T/10] and [9T/10, T]. Test samples with absolute predic-
tion errors larger than 0.04 are regarded as incorrect predic-
tions. The results of randomly initialized LSTMs and layer-
wise trained LSTMs are summarized in Table 1., which shows
that layer-wise training helps to improve the performance of
LSTMs on the sequence regression task.

4.2. MNIST Classification

In this experiment, we transformed the MNIST inputs into a
sequence classification problem by converting the pixels into
binary representations and presenting the image to the LSTM
row by row. Therefore, the 28×28 images generate sequences
of 28 bit vectors of dimension 28. The network is required
to predict the next digit after all 28 vectors have been pre-
sented to the LSTM. In all the experiments, LSTM models
were trained on the data with 256 states and a learning rate
between 10−1 and 10−5. For the randomly initialized LSTM,
the weights were initialized by U [−0.003, 0.003]. Table 2
lists the results. We can confirm that layer-wise pretraining
of LSTMs can also improve their performances on sequence
classification tasks.

To further investigate the effectiveness of layer-wise pre-
training on the evolution of LSTMs learning, we present all
the training losses and test errors during the entire learning
process w.r.t. different learning rates and layer sizes, as shown
in Fig. 3 and Fig. 4. These results indicate that layer-wise
pretraining improves LSTM models in the following three as-
pects:
• With pretraining, the model converges faster because

pretraining can cause the weights of LSTM to be lo-
cated closer to good local minima.

• With pretraining, the model achieves reduced test error
levels under comparable training losses, demonstrating

Fig. 4. Evolution of training loss on MNIST without pretraining
and with pretraining w.r.t. different learning rates. Left: LSTM with
1 layer. Middle: LSTM with 2 layers. Right: LSTM with 3 lay-
ers. (Due to the space limitation, the full size figure is given in the
supplementary material.)

Table 3. Performance of LSTMs on UCF-101 split 3 dataset.
Methods Accuracy

Random initialized (1 layer) 78.67%
Layer-wise initialized (1 layer) 79.35%
Random initialized (2 layers) 79.01%

Layer-wise initialized (2 layers) 79.67%
Random initialized (3 layers) 78.93%

Layer-wise initialized (3 layers) 79.74%

that layer-wise pretraining improves the generalization
ability of the LSTM model.
• For different layer sizes and different learning rates, the

LSTM with layer-wise pretraining shows consistent su-
periority in terms of both training losses and testing er-
rors. This result verifies that pretraining reduces the
model’s sensitivity to parameters.

4.3. UCF-101 Video Classification

The UCF-101 dataset contains 13, 320 videos with an average
length of 6.2 sec [14]. Each video belongs to one of 101
different action categories. Approximately 9, 500 videos are
used for training and the rest for testing. This dataset has three
different training and testing splits for evaluation purposes. In
this paper, we conducted experiments on split 3.

The LSTM models were trained on data with 1, 024 states,
and the learning rate selected was between 10−1 and 10−5.
For the random initialized LSTM, the weights were initial-
ized from a uniform distribution of U [−0.003, 0.003]. Batch
size was set to 10, the gradient clip was set to 35 and the mo-
mentum was set to 0.9. The test results are presented in Table
3. We can conclude that layer-wise pretraining helps LSTMs
achieve much better performances on the video recognition
task.

4.4. Machine Translation

In the machine translation task, we compare our layer-wise
pretraining initialization and random initialization scheme
against the model proposed in [13]. We train and test LSTMs

Table 4. Performance of LSTMs on WMT’14 dataset.
Methods BLEU

Random initialized (1 layer) 24.33
Layer-wise initialized (1 layer) 25.37
Random initialized (2 layers) 26.49

Layer-wise initialized (2 layers) 27.38
Random initialized (3 layers) 28.17

Layer-wise initialized (3 layers) 29.03

on a subset of the 12M sentences in the WMT’14 English
to French dataset. This dataset consists of 304M English
words and 348M French words. The most frequently occur-
ring 160, 000 words in English sentences and 80, 000 words
in French sentences were used to build the vocabulary. Every
out-of-vocabulary word is replaced with a special “ UNK” to-
ken. The beginning and ending of sentences are marked with
“ GO” and “ EOS” tokens, respectively.

All the layers in the LSTMs had 1, 000 states, and all the
input words were embedded as a dense representation with
1, 000 dimensions. Sentences were inputted to the encoding
LSTM in reverse order. A naive softmax layer with 8, 000
outputs was used to predict each word in the target sentence.
All the weights were initialized to U [−0.008, 0.008]. The
learning rate was initialized to 0.5 and decreased by 0.99
when no improvement occurred over the previous 3, 000 it-
erations. We chose a batch size of 64. Gradients in each up-
date were clipped to a norm of 5. To compromise between
constructing a graph for every pair of lengths and padding to
a single length, we used a number of buckets with lengths
of [(5, 10), (10, 15), (20, 25), and(40, 50)] and padded each
sentence to the length of the bucket with a “ PAD” token.
Performances of the models are evaluated by BLEU scores
using multi-bleu.pl the ground truth and predictions. Experi-
mental results are listed in Table 4. The results indicate that
sequence-to-sequence learning tasks also benefit from greedy
layer-wise pretraining of LSTMs.

5. CONCLUSIONS

In this paper, we proposed a novel unsupervised layer-wise
approach to initializing LSTM networks. This learning strat-
egy generally improves the performance of LSTMs on re-
gression, image recognition, video recognition and sequence-
to-sequence learning tasks. Our analysis implies that, with
layer-wise pretraining, LSTMs converge faster, have reduced
test error and are less sensitive to hyperparameters. In future
work, we plan to investigate the importance of pretraining for
each layer in the deep LSTM models, and which memory and
sequence features are learned after layer-wise pretraining.

6. ACKNOWLEDGEMENT

This work was supported by National Key R&D Program of
China 2017YFB1002203, NSFC No.61572451, Youth Inno-
vation Promotion Association CAS CX2100060016, and Fok
Ying Tung Education Foundation WF2100060004.

7. REFERENCES

[1] Nitish Srivastava, Elman Mansimov, and Ruslan
Salakhutdinov, “Unsupervised learning of video repre-
sentations using lstms,” in ICML, 2015, pp. 843–852.

[2] Dumitru Erhan, Pierre-Antoine Manzagol, Yoshua Ben-
gio, Samy Bengio, and Pascal Vincent, “The difficulty of
training deep architectures and the effect of unsupervised
pre-training,” in AISTATS, 2009, pp. 153–160.

[3] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science,
vol. 313, no. 5786, pp. 504–507, 2006.

[4] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo
Larochelle, “Greedy layer-wise training of deep net-
works,” in NIPS, pp. 153–160. 2007.

[5] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-
Antoine Manzagol, Pascal Vincent, and Samy Bengio,
“Why does unsupervised pre-training help deep learn-
ing?,” Journal of Machine Learning Research, vol. 11,
pp. 625–660, 2010.

[6] Jason Tyler Rolfe and Yann LeCun, “Discriminative re-
current sparse auto-encoders,” in ICLR, 2013.

[7] Félix G. Harvey and Christopher J. Pal, “Semi-supervised
learning with encoder-decoder recurrent neural networks:
Experiments with motion capture sequences,” CoRR, vol.
abs/1511.06653, 2015.

[8] Andrew M. Dai and Quoc V. Le, “Semi-supervised se-
quence learning,” CoRR, vol. abs/1511.01432, 2015.

[9] Sepp Hochreiter and Jürgen Schmidhuber, “Long short-
term memory,” Neural Computation, vol. 9, no. 8, pp.
1735–1780, 1997.

[10] Klaus Greff, Rupesh Kumar Srivastava, Jan Koutnı́k,
Bas R. Steunebrink, and Jürgen Schmidhuber, “LSTM:
A search space odyssey,” CoRR, vol. abs/1503.04069,
2015.

[11] W. Zaremba and I. Sutskever, “Learning to execute,”
arXiv preprint, vol. arXiv:1410.4615, 2014.

[12] Xavier Glorot and Yoshua Bengio, “Understanding the
difficulty of training deep feedforward neural networks,”
in AISTATS, 2010.

[13] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Se-
quence to sequence learning with neural networks,” in
NIPS, Z. Ghahramani, M. Welling, C. Cortes, N.D.
Lawrence, and K.Q. Weinberger, Eds., pp. 3104–3112.
2014.

[14] Khurram Soomro, Amir Roshan Zamir, and Mubarak
Shah, “Ucf101: A dataset of 101 human actions classes
from videos in the wild,” CoRR, vol. abs/1212.0402,
2012.

